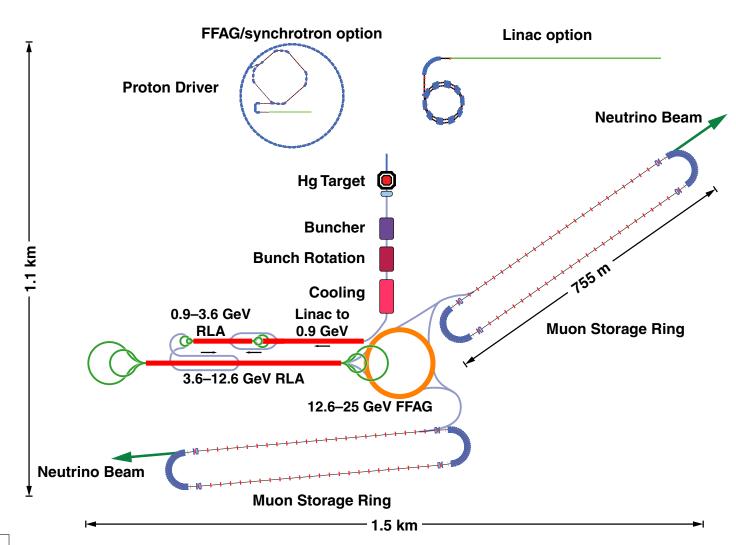
IDS Baseline and Work Plan

J. Scott Berg Brookhaven National Laboratory Second IDS Plenary Meeting 10 June 2008

Outline

- Baseline Specification
 - Overall goals
 - Subsystem specifications
- Work plan

Baseline Overall Goals



- 25 GeV total energy muon beam
- 10²¹ decays per 10⁷ second year toward target
- \circ Angular divergence below $0.1/\gamma$
- Two baselines
 - □3000–5000 km
 - □7000-8000 km

Baseline IDS Accelerator Systems

Baseline Proton Driver

- 4 MW proton power
- Energy range 5–15 GeV
- 50 Hz repetition rate
- 3 bunches per pulse
 - \square Arrive within 40 μ s, separated by $\geqslant 17~\mu$ s
- 1–3 ns RMS bunch length
- Bunch structure important to target, acceleration, and storage ring

Baseline Target

- Liquid Hg jet
- Velocity 20 m/s
- Jet gives limitations on proton pulse structure
 - Proton bunch structure affects acceleration and storage ring designs
 - MERIT results will indicate what proton bunch structure is possible

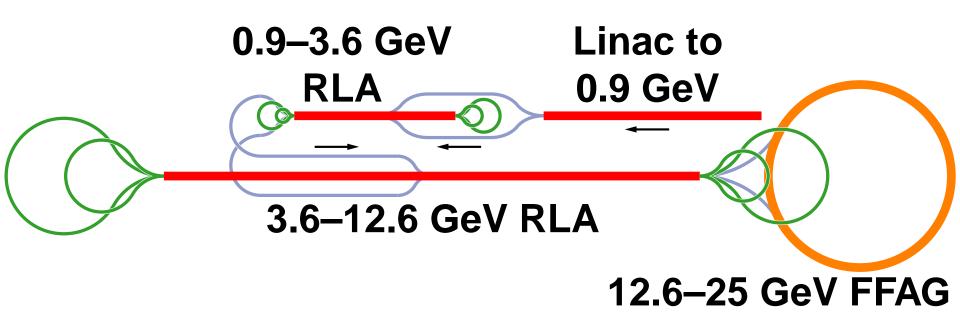
Baseline Front End

- Based on US Study IIb
- 201.25 MHz train, average momentum220 MeV/c
- "Neuffer" phase rotation and bunching
 - Many different cavity frequencies
- Modest amount of cooling
 - Increase muons within acceptance
 - □30 mm normalized trans., 150 mm long.

Baseline Front End

- Current design: high magnetic fields on cavities
- Experimental results indicate maximum gradients lower when magnetic fields present
- Must re-design front end considering this
 - Need more precise experimental results

Baseline Acceleration



- Accelerate cooled beam to 25 GeV
- Four stages, maximize efficiency
 - Linac
 - □ Two dogbone RLAs
 - Linear non-scaling FFAG
- All use 201.25 MHz SCRF, 15–17 MV/m

Baseline Acceleration

Baseline Acceleration

- Proton bunch structure affects design
- Beam loading when making many passes
- Different trains gain different energy
- \circ At least 150–200 μ s for all trains
 - Depends on number of RLA/FFAG passes
 - Longer than time allowed by target
 - MERIT results may lengthen allowed time
- May require complex RF manipulations to fix

Baseline Storage Ring

- Two racetrack rings
- Both rings capable of two simultaneous signs
- 100 ns gap between bunch trains
- Circumference can hold 6 trains plus gaps
 - □ Three trains, two signs

Work Plan Proton Driver

- Design of at least one proton driver meeting IDS NF requirements
 - □ 4 MW, 3 bunches, 50 Hz very challenging
 - Sufficient design and simulation to get general agreement that system is possible
- Multiple proton drivers can be considered
 - Cost and performance comparison
 - Sufficient information for comparison needed
 - Avoid degenerating to lab-vs-lab

Work Plan Target

- Analysis of MERIT data
 - Determine proton bunch train length possible
 - Maybe other critical parameters
 - Drives design parameters for other systems
 - Acceleration
 - Proton driver
- Engineering of target infrastructure

Work Plan Front End

- Bunching, phase rotation, cooling
- Experimental results relating magnetic fields on cavities and achievable cavity gradients
- Re-design of front end based on field limitations
 - Current designs probably have too much magnetic field at cavities

Work Plan Acceleration: Linac

- Pre-accelerator linac design complete
- Able to accelerate from cooling energy
 - No expensive warm acceleration
- Still needs tracking and analysis

Work Plan Acceleration: Dogbone RLAs

- Injection system
- Full lattice design
 - Linear lattice design (linac and arcs)
 - Chromatic correction in arcs
- Engineering of switchyard and arc crossings
- Transfer lines
- Tracking and analysis

Work Plan Acceleration: FFAG

- Lattice design
 - Done, but will be revised
- Injection and extraction
 - Preliminary studies done, still don't have a working system
- Transfer lines
- Tracking and analysis

Work Plan Storage Ring

- Lattice design for 25 GeV rings
- Injection
- Tracking and analysis
 - Neutrino flux distribution

Work Plan Overall System

- Engineering and cost estimate
 - Get estimate of system cost
 - Information for cost and performance optimization
 - Front-end, especially cooling
 - Acceleration choices

Potential Pitfalls and Alternatives

- Some potential problem areas
 - Proton driver with compatible bunch structure
 - Cavities in magnet fields in front end
 - Successfully accelerating a beam with efficient systems

- If any of these give problems that can't be solved, significant re-design may be needed
 - Different target if proton driver problematic
 - New method for bunching and phase rotation
 - Probably more expensive
 - Other (more expensive?) acceleration options
 - ♦ E.g., scaling FFAGs

